a2 United States Patent

Alarcon et al.

US009448878B2

US 9,448,878 B2
*Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

CLOCK DOMAIN CROSSING SERIAL
INTERFACE

Applicant: BROADCOM CORPORATION,
Irvine, CA (US)
Inventors: Veronica Alarcon, San Jose, CA (US);
Walid Nabhane, Long Valley, NJ (US);
Mark Norman Fullerton, Austin, TX
(US); Love Kothari, Sunnyvale, CA
(US); Ronak Subhas Patel, Sunnyvale,
CA (US); Chih-Tsung Hsieh, Taipei
(TW); Hao-zheng Lee, Taipei (TW)
Assignee: Broadcom Corporation, Irvine, CA
(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/631,709

Filed: Feb. 25, 2015

Prior Publication Data

US 2015/0186209 Al Jul. 2, 2015

Related U.S. Application Data

Continuation of application No. 13/950,713, filed on
Jul. 25, 2013, now Pat. No. 8,996,736.

Provisional application No. 61/759,470, filed on Feb.
1, 2013, provisional application No. 61/836,903, filed

(52) US.CL
........... GOGF 11/1048 (2013.01); GOIR 31/36
(2013.01); GOSF 1/625 (2013.01); GOGF 1/26
(2013.01); GOGF 1/3206 (2013.01); GO6F
1/3287 (2013.01); GOGF 11/1016 (2013.01);
GOGF 11/3062 (2013.01); GOGF 11/3093
(2013.01); GO6F 13/126 (2013.01); GIIC
7/106 (2013.01); GIIC 771072 (2013.01);
HO02J 7/0029 (2013.01); GOIR 19/003
(2013.01);

(Continued)

(58) Field of Classification Search

CPC GOG6F 13/126; GO6F 1/625; GO6F 1/26;
GO6F 1/3206; GO6F 1/3287, GOGF 11/3058;
GOG6F 11/1048; GOGF 11/1016; GOGF
11/3062; GO6F 11/3093; GOGF 11/3031;
GO1R 31/36; GOIR 19/003; GOIR 31/40;
HO02J 7/0029; G11C 7/106; G11C 7/1072;
YO02B 40/90

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,725,388 B1* 4/2004 Susnow GO6F 5/10
713/400
7,107,393 B1* 9/2006 Sabih GOG6F 5/08
711/109

(Continued)
Primary Examiner — Jing-Yih Shyu
(74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP

(57) ABSTRACT

A method for serial interface clock domain crossing includes
identifying a data communication command received over a
serial interface. An address is decoded to determine whether
the address falls within a direct latch address range of a

(Continued) register bank. Data is communicated over the serial inter-
face. A multiplexed output clock is generated, for writing to
Int. C1. and reading from the register bank, based on at least one of
GOGF 3/00 (2006.01) a current system operating state and a refresh control signal
GOGF 11/10 (2006.01) from a host processor.
(Continued) 20 Claims, 6 Drawing Sheets
Status
102 s
N ADDR/ SCLK | Register
WRITE DATA =5
\ $ Register
128 E?f_orék
Sk Register
fi%f‘LK-» interface Addrassing and
e PHY T PMuCLY Control
1L AL 3107 | PMUCLK Circuit
#8500 - 304 Direct Latch
Registers
READ DAT, 209
4
--- SCLK—— Clock Mux | 40
paucLk— 812 seTmmm—
[)
Debounce JUU U Um
BB_RESETb—¥ ~ 314 oA
— PMUGLK SCLK

US 9,448,878 B2
Page 2

(1)

Related U.S. Application Data

on Jun. 19, 2013, provisional application No. 61/836,
886, filed on Jun. 19, 2013, provisional application
No. 61/836,895, filed on Jun. 19, 2013, provisional
application No. 61/836,306, filed on Jun. 18, 2013,
provisional application No. 61/836,327, filed on Jun.
18, 2013, provisional application No. 61/834,513,
filed on Jun. 13, 2013, provisional application No.
61/833,598, filed on Jun. 11, 2013, provisional appli-
cation No. 61/759,470, filed on Feb. 1, 2013.

Int. CL.

GOSF 1/625 (2006.01)
GO6F 13/12 (2006.01)
GO6F 1/26 (2006.01)
GOIR 31736 (2006.01)
HO02J 7/00 (2006.01)
GO6F 1/32 (2006.01)
G1iC 7/10 (2006.01)
GO6F 11/30 (2006.01)
GOIR 31/40 (2014.01)

GOIR 19/00 (2006.01)

(52) US.CL
CPC ... GOIR 31/40 (2013.01); GOGF 11/3031
(2013.01); GO6F 11/3058 (2013.01); YO2B
60/1282 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,873,762 B2* 1/2011 Wangccccoeveiins GO6F 5/14
375/376

8,867,573 B2* 10/2014 Kolinummi GO6F 13/4059
365/221

2002/0126789 Al* 9/2002 Georges HO04J 3/0691
375/377

2006/0209784 Al* 9/2006 Cheng Gang HO3M 9/00
370/350

2006/0214902 Al* 9/2006 Tamura ... GOG6F 3/1431
345/100

2007/0286223 Al* 12/2007 Chang GOG6F 1/3203
370/413

2013/0013950 Al* 1/2013 Maddigan HO4L 7/02
713/400

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 6 US 9,448,878 B2

1 Q\e /130
f Host SOC
GRS
Sub%s%/?tem N Application Modem Graphics
BT/ WLAN — Processor 141 Processor
Subsystem |« | Subsve 140 e 142
170 yS-
Camera Interface 7 .
Subsystem g 162
172
Sensor
Subsvst " 3
buo?%/g e . Power Manager 131
Pawer Processar
Systemn Mermory 132
Memory i Interface
184 183 Serial Com.
Memory Interface
133 Master
134
System ——‘3--
Battery
182
! 128
VBat 100
" Q’ "
ADC O EMU Serial Com.
118 o) Interface
Battery PMU Conirolier 5,;%\?‘
| ADCH Charger 11 —
11 Circuit
R 165 L5 PMU
Register
® Bank
ADC N OTP Map 103
112 108 L
s System s
Bus || BCD | fower L voPin || AP
interface Power IF; OMf Power Power ige s
VBat —» Power & 121 M 122” o 123 B 124
120 e
G

X
Systern Power

U.S. Patent Sep. 20, 2016 Sheet 2 of 6 US 9,448,878 B2
/1 30) ,,10(3
Pl Controller
BB RESETh— 01
Power Manager 131 128 ¢ $
Sawer Serial Com. ——CSb » Serial Com. PMU
o interface b SCLK interface Hegister
ra@gser 1 Master L1 _gp Stave Bank
2 134 '—+—SDO 102 103
Status
102 ‘
WRITE DATA f =
\\ ‘ 3 Register
4 g Bank
i e e O -
; . egister
iir?:Sb% interface 4 Addressiﬂg and
i !b(,LKw PHY 7 Control
“TSDEM» 302 3107 ' PMUCLK Cireuit
L 500 - ® 304 Diract Latch
Registers
e READ DATA 208
4
SCLK—] Clock Mux | any!
312 G YA e
PMUCLIC—
¢
Debounce f !
BE.RESETD 214 PE\AUCL& QSCLK

US 9,448,878 B2

Sheet 3 of 6

Sep. 20, 2016

U.S. Patent

asuodssy

Folt] -00S-
2eq $591ppY PUBLILIOD)

AN

S3uUCUs8y
ﬂg P
BRI \\ etlvrst] =005

-
oo sl

i HEAA SSAPDY DUBLHLIO
. » % - 5
ex)vi)st) mw tlele] eias—

#1058

#-Gg0~

US 9,448,878 B2

Sheet 4 of 6

Sep. 20, 2016

U.S. Patent

b

M RIRLIAS M \\ M BIR03480 W IR0} M iy

]

[

1

P

dsy ewapy |) | ewapy | eweapy

=058

«—|(J5—

e108-

&-4a0—

(05—

i3S

#3108~

&30~

U.S. Patent Sep. 20, 2016 Sheet 5 of 6 US 9,448,878 B2

Serial Interface Clock
Domain Crossing, Direct
Laiching, and Response 10

Codes ‘[’
800
v
Receive Command/
Address Over Serial
interface
802

1

Identify Command
804

Read f® VWrite
—< Command? >w
606 -
3 \\\/ ¥
Resolve Addrass Resolve Addrass
808 g18

Compare Address for
Cverlap with Daia Direct

Waiting in FIFO Latch Address Range?
g10 Y 820 N
i' ~

{Tirect Lalch) RN (FIFO)
Wait / Account for

Cinck Domain
Crossing
812
v
Communicate Data or
NULL Reply Qver
Serial Inlerface
814
¢

Communicate
Response Code
818

{ End }

U.S. Patent Sep. 20, 2016 Sheet 6 of 6 US 9,448,878 B2

Direct Laich

Communicate Data Communicate Data
Over Serial interface Qver Serial Interface
£22 628
D fy Latch Data Into D :
irectly Latch Data Into Direct
Latch Register and Account for Refg;tc:;ﬁ?é?ms
Clock Domain Crossing 693‘5
624 —
!

¥
Write Data 1o FIFO

Communicate and Increment Status

Response Code

. Register
826 532
¥
End Communicate
Response Code
834

US 9,448,878 B2

1
CLOCK DOMAIN CROSSING SERIAL
INTERFACE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. application Ser.
No. 13/950,713, filed Jul. 25, 2013, which claims the benefit
of' U.S. Provisional Application No. 61/759,470, filed Feb. 1,
2013; U.S. Provisional Application No. 61/833,598, filed
Jun. 11, 2013; U.S. Provisional Application No. 61/834,513,
filed Jun. 13, 2013; U.S. Provisional Application No.
61/836,327, filed Jun. 18, 2013; U.S. Provisional Applica-
tion No. 61/836,306, filed Jun. 18, 2013; U.S. Provisional
Application No. 61/836,895, filed Jun. 19, 2013; U.S. Pro-
visional Application No. 61/836,886, filed Jun. 19, 2013;
and U.S. Provisional Application No. 61/836,903, filed Jun.
19, 2013, the entire contents of each of which are hereby
incorporated herein by reference. This application also
makes reference to U.S. patent application Ser. No. 13/950,
725 titled “Power and System Management Information
Visibility” and filed on even date herewith; U.S. patent
application Ser. No. 13/950,738 titled “Power Mode Regis-
ter Reduction and Power Rail Bring Up Enhancement” and
filed on even date herewith; U.S. patent application Ser. No.
13/950,750 titled “Dynamic Power Profiling” and filed on
even date herewith; U.S. patent application Ser. No. 13/950,
762 titled “Charger Detection and Optimization Prior to
Host Control” and filed on even date herewith; U.S. patent
application Ser. No. 13/950,769 titled “Enhanced Recovery
Mechanism” and filed on even date herewith; and U.S.
patent application Ser. No. 13/950,776 titled “Dynamic
Power Mode Switching Per Rail” and filed on even date
herewith, the entire contents of each of which are hereby
incorporated herein by reference.

BACKGROUND

Battery-powered computing systems and devices have
been adopted for use in many aspects of daily life. As these
systems and devices are more widely adopted and used in
place of other computing systems and devices, they are
designed to be more flexible and powerful, but are also more
complex. With advances in the design of battery-powered
computing devices, the availability of sufficient power for
the devices continues to be an ongoing concern. Thus,
certain elements in battery-powered computing systems are
designed to operate at relatively low frequencies to conserve
power. On the other hand, other elements in battery-powered
computing systems should operate at relatively higher fre-
quencies to execute various applications quickly and con-
currently.

In this context, different elements in computing systems,
each of which may operate at a respective operating fre-
quency, may need to communicate data among each other.
Further, because physical space is constrained, there is an
incentive to design interfaces between the elements in a
system using few device pins.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
with emphasis instead being placed upon clearly illustrating
the principles of the disclosure. Moreover, in the drawings,

10

15

20

25

30

35

40

45

50

55

60

65

2

like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 illustrates a system having a serial interface for
clock domain crossing according to an example embodi-
ment.

FIG. 2 illustrates the serial interface of the system of FIG.
1 according to an example embodiment.

FIG. 3 illustrates a serial communications interface slave
of the system of FIG. 1 according to an example embodi-
ment.

FIG. 4A illustrates a read timing diagram for communi-
cations over the serial interface of the system of FIG. 1
according to an example embodiment.

FIG. 4B illustrates a write timing diagram for communi-
cations over the serial interface of the system of FIG. 1
according to an example embodiment.

FIG. 5A illustrates a burst read timing diagram for com-
munications over the serial interface of the system of FIG.
1 according to an example embodiment.

FIG. 5B illustrates a burst write timing diagram for
communications over the serial interface of the system of
FIG. 1 according to an example embodiment.

FIG. 6 illustrates a process flow diagram for a method of
serial interface clock domain crossing, direct latching, and
response codes performed by the system of FIG. 1 according
to an example embodiment.

FIG. 7 further illustrates a process flow diagram for the
method of serial interface clock domain crossing, direct
latching, and response codes performed by the system of
FIG. 1 according to an example embodiment.

DETAILED DESCRIPTION

Different elements in computing systems, each of which
may operate at a respective operating frequency, may need
to communicate data among each other. Further, because
physical space is constrained, there is an incentive to design
interfaces between the elements in a system using few
device pins.

In a system including a host processor and a power
management unit, it may be necessary to communicate
quickly between the host processor and the power manage-
ment unit, for example, if power rails in the system are
controlled by the host processor via communication with the
power management unit. It is noted that, in newer battery-
powered communications systems, a greater number of
different power rails are being incorporated, and the quick
transition of power rails is an ongoing concern for power
conservation.

In this context, if the general interface between the host
processor and the power management unit is too slow to
support high speed communication of commands for tran-
sitioning the power rails, other solutions may be needed. For
example, in addition to any general communications inter-
face between the host processor and the power management
unit, dedicated power control pins, for example, may be
relied upon to transition at least certain power rails quickly.
These dedicated pins are associated with added system cost,
for various reasons. Particularly, the pins require physical
space in the system and in the associated circuitry and logic
of the system.

In an effort to address certain problems described above,
aspects of a clock domain crossing serial interface, direct
latching over the serial interface, and response codes are
described herein. In various embodiments, a data commu-
nication command received over a serial interface is iden-
tified, and an address received over the serial interface is

US 9,448,878 B2

3

resolved to access a register bank. In a write operation,
depending upon whether the address falls within a direct
latch address range of the register bank, data may be directly
latched into a direct latch register of the register bank or into
a first-in-first-out (FIFO) registers. For both read and write
operations, reference may be made to a status register of the
serial interface to identify or mitigate error conditions, and
wait times may be relied upon to account for a clock domain
crossing. After each of the read and write operations, a
response code including a status indictor may be commu-
nicated.

Turning now to the drawings, an introduction and general
description of exemplary embodiments of a system is pro-
vided, followed by a description of the operation of the
same.

1. System Introduction

FIG. 1 illustrates a system 10 having a serial interface 128
for clock domain crossing according to an example embodi-
ment. The system 10 may embody a computing device that
includes a number of general and/or specific purpose cir-
cuits, processing circuits, processors, registers, memories,
sensors, displays, etc. In one embodiment, the system 10
may embody a handheld or portable computing device
which is powered from charge stored in a battery. In various
embodiments, the system 10 may be embodied as part of a
cellular telephone, tablet computing device, laptop com-
puter, or other computing device. Alternatively, because the
embodiments described herein are not limited to use in
handheld or portable computing devices, the system 10 may
be embodied as part of a desktop or set top computing
device, for example. Although not illustrated in FIG. 1, it
should be appreciated that the system 10 may include one or
more displays, microphones, speakers, buttons, indicator
lights, haptic feedback elements, memory card readers, etc.

Among other elements, the system 10 includes a power
management unit (PMU) 100, a host system-on-chip (SOC)
130, a system battery 182, and a system memory 184. The
system 10 also includes certain subsystems such as a blu-
etooth/wireless local area network (WLAN) subsystem 170,
a global positioning system (GPS) subsystem 171, a camera
subsystem 172, and a sensor subsystem 173.

The system battery 182 may be embodied as any
rechargeable battery suitable for the application, such as a
lithium-ion, nickel-metal-hydride, or other battery variant,
without limitation. The system memory 184 may be embod-
ied as a volatile and/or non-volatile random access memory
or combination thereof. The system memory 184 may store
computer-readable instructions thereon that, when executed
by one or more of the processors 140-142 of the host SOC
130, for example, direct the processors 140-142 to execute
various aspects of the embodiments described herein.

In general, the PMU 100 controls and/or facilitates con-
trol of the distribution of power from the system battery 182
to the elements of the system 10, such as the host SOC 130,
the subsystems 170-173, and the system memory 184, for
example. As further described below, depending upon the
operating state of the system 10 and/or other factors, the
PMU 100 may control the distribution of power to one or
more elements of the system 10, or the PMU 100 may
receive instructions to control the distribution of power to
one or more elements of the system 10.

Among other elements, the PMU 100 includes a PMU
controller 101, a serial communications interface slave 102,
a PMU register bank 103, a battery charger circuit 105, a one
time programmable (OTP) map 106, a number 0-N of
analog-to-digital (ADC) circuits 110-112, and a number of
power rail circuits 120-124. It is noted that FIG. 1 illustrates

10

15

20

25

30

35

40

45

50

55

60

4

a representative example of elements of the PMU 100, and
it should be appreciated that the PMU 100 may include other
elements in various embodiments. For example, the PMU
100 may include a number of power rail circuits in addition
to the power rail circuits 120-124.

Among other elements, the host SOC 130 includes gen-
eral and/or application specific processors. In FIG. 1, the
host SOC 130 includes a power manager 131, an application
processor 140, a modem 141, and a graphics processor 142.
In various embodiments, the host SOC 130 may omit one or
more of the processors 140-142 or include processors in
addition to the processors 140-142. The host SOC 130 also
includes a subsystem interface 162 and memory interface
163. The subsystem interface 162 and the memory interface
163 electrically and communicatively couple the subsystems
170-173 and the system memory 184 to the host SOC 130
and, particularly, to one or more of the processors 140-142.

The application processor 140 may be embodied as a
general purpose processor for executing various applica-
tions. For example, the application processor 140 may
execute an underlying operating system along with applica-
tions such as e-mail, short message service (SMS), tele-
phone, camera, web-browser, and other applications, with-
out limitation. As compared to the PMU 100 and/or the
power manager 131, the application processor 140 may
consume relatively more power during operation. The
modem 141 may include a cellular-based (or similar) com-
munications processor for the communication of data wire-
lessly in connection with radio-frequency front end circuitry,
and the graphics processor 142 may include a processor for
driving a display of the system 10.

The power manager 131 includes a power processor 132,
amemory 133, and a serial communications interface master
134. The power processor 132 may be embodied as a
relatively small and low power processor or processing
circuit for interfacing with the PMU 100 via a serial inter-
face 128. In one embodiment, the serial communications
interface master 134 of the power manager 131 controls the
serial interface 128, although the PMU 100 may control the
serial interface 128 in other embodiments. The memory 133
stores computer-readable instructions for execution by the
power processor 132.

II. System Operation

With reference to the elements of the system 10 intro-
duced above, aspects of the operation of the system 10 are
described below.

A. PMU Operation

The PMU 100 may be designed, adapted, and configured
to perform operations that support the host SOC 130, the
subsystems 170-173, the system memory 184, and other
elements of the system 10. For example, the PMU 100 may
remain in a powered-on mode of operation, even when the
host SOC 130 and other elements of the system 10 are in a
powered-off mode of operation. The PMU 100 may be
maintained in the powered-on mode of operation so as to
gather system parameters for the system 10 and provide
power to certain elements in the system 10 from time to
time.

The PMU controller 101 generally coordinates and con-
trols the operations of the PMU 100. The PMU controller
101 may be embodied as a general or specific purpose
circuit, processing circuit, processor, state machine, etc. The
PMU controller 101 interfaces with the serial communica-
tions interface slave 102 to communicate with the host SOC
130 over the serial interface 128, interfaces with the power
rail circuits 120-124 to control power to the system 10, and
interfaces with the PMU register bank 103 to store and

US 9,448,878 B2

5

access data associated with the status of the PMU 100 and
the system 10. Additionally, the PMU controller 101 inter-
faces with other elements of the PMU 100, such as the ADCs
110-112 and the OTP map 106.

The serial communications interface slave 102 comprises
one end of the serial interface 128 that facilitates commu-
nication between the PMU 100 and the host SOC 130.
Among various modes and states of operation of the system
10, the serial interface 128 is relied upon to communicate
system parameters or system status data between the PMU
100 and the host SOC 130. For example, the PMU 100 may
maintain system parameters or system status data regarding
a battery voltage of the system battery 182 (i.e., VBat), a
temperature of one or more components of the system 10,
voltage and/or mode settings of the power rails 120-124, etc.
According to aspects of the embodiments described herein,
the serial communications interface slave 102 identifies and
distinguishes among read and write data communications
commands, identifies and distinguishes among addresses for
access to certain registers in the PMU 100, and accounts for
a clock domain crossing in association with the data com-
munication over the serial interface 128. Further aspects of
the serial communications interface slave 102 are described
below.

The OTP map 106 includes an array of programmable
fuses or similar circuit elements that may be programmed to
retain a logical value. The logical values retained in the OTP
map 106 may be relied upon to store initial voltage settings,
for example, for one or more of the power rail circuits
120-124. That is, the OTP map 106 may store voltage and/or
current settings for power supplied by one or more of the
system bus interface power rail 120, the BCD power rail
121, the power manager power rail 122, the 1/O pin power
rail 123, and/or the application processor (AP) power rail
124. Depending upon the operating status of the system 10,
the PMU controller 101 may directly set the voltage and/or
current settings for one or more of the power rails 120-124
based on the logical values retained in the OTP map 106, for
example, and/or other factors. Additionally or alternatively,
depending upon the operating status of the system 10, the
PMU controller 101 may set voltage and/or current settings
for one or more of the power rails 120-124 based on
instructions received from the host SOC 130 via the serial
interface 128, as further described below.

B. Host SOC Operation

The host SOC 130 may be generally embodied as a full
system-on-chip semiconductor device. In this sense, the host
SOC 130 integrates various general and/or application spe-
cific processors and processing circuits into a single inte-
grated circuit package, reducing space. Overall, the power
manager 131 of the host SOC 130 supports the host SOC
130 and the power requirements of the host SOC 130.

FIG. 2 illustrates the serial interface 128 of the system 10
of FIG. 1 according to an example embodiment. As illus-
trated, the serial interface 128 is coupled between the serial
communications interface master 134 of the power manager
131 (of the host SOC 130) and the serial communications
interface slave 102 of the PMU 100. The serial interface 128
includes the CSb, SCLK, SDI, and SDO interface channels,
as illustrated. In one example embodiment, the serial inter-
face 128 may operate at a frequency of about 20 Mhz,
although the internal operating frequency of the PMU 100
may be about 32Khz, to conserve power. It is noted, how-
ever, that the serial interface 128 and the PMU 100 may each
operate at any suitable respective frequencies, without limi-
tation.

10

15

20

25

30

35

40

45

50

55

60

65

6

Generally, the CSb channel is relied upon in the serial
interface 128 as a reset, hold, or activity signal. In one
embodiment, the serial interface 128 may be active when the
logic level of the CSb channel is held low. The SCLK
channel is relied upon in the serial interface 128 as a
synchronous clock. The SDI channel is relied upon in the
serial interface 128 to communicate data from the serial
communications interface master 134 to the serial commu-
nications interface slave 102, and the SDO channel is relied
upon in the serial interface 128 to communicate data from
the serial communications interface slave 102 to the serial
communications interface master 134. As illustrated in FIG.
2, a refresh control signal BB_RESETb may also be com-
municated from the host SOC 130 to the PMU 100, for use
in certain cases described in further detail below.

In one embodiment, as further described below, the serial
interface 128 may communicate (e.g., receive and transmit)
16-bit data words and support bursts of up to 16-words,
although other data chunks and bursts are within the scope
and spirit of the embodiments described herein. The serial
interface 128 incorporates mechanisms to detect certain
protocol and/or communications errors, and uses response
codes to indicate certain errors. The serial communications
interface slave 102 synchronizes writes to a lower frequency
clock domain as compared to the operating frequency of
serial interface 128 itself (i.e., the SCLK synchronous clock
driven by the serial communications interface master 134).
To facilitate certain lower frequency clock domain writes,
the serial communications interface slave 102 includes one
or more synchronizing FIFO registers. However, the serial
communications interface slave 102 also permits higher
frequency SCLK domain writes to direct latch registers. In
some embodiments, reads from the PMU 100 may occur in
the SCLK domain (e.g., 20 MHz) for both PMU domain
registers (e.g., 32 KHz registers) and the direct latch regis-
ters. The serial communications interface slave 102 also
accounts for or avoids metastability or unsettled or transi-
tioning data by ensuring that data reads are taken within
about V2 an SCLK edge of a 32 KHz clock edge. Without this
feature, it might be possible to read inaccurate or old data.

Using the serial interface 128, the application processor
140 (FIG. 1) and/or the power manager 131, for example,
may read and write to the PMU register bank 103 of the
PMU 100 (FIG. 1). In this manner, the application processor
140 and/or the power manager 131 may control various
aspects of the operation of the PMU 100, such as battery
charging, power rail control, etc. Further, the application
processor 140 and/or the power manager 131 may read
system status information that is gathered and stored by the
PMU 100 over time, to reference certain operating condi-
tions of the system 10.

In the embodiments described herein, the power manager
131 is the master of the serial interface 128, generally, as it
drives the SCLK signal. However, in other embodiments,
the PMU 100 may be the master of the serial interface 128
and control or drive the SCLK signal. In operation, the serial
interface 128 may operate at any suitable frequency for the
application. In view of this difference in operating frequen-
cies, according to certain aspects described herein, the serial
communications interface slave 102 permits clock domain
crossing. In this context, a clock domain crossing is
achieved by avoiding metastability and/or unsettled data,
when crossing between different clock domains of the serial
interface 128 and the PMU 100. In this manner, the validity
of data being written to and read from certain registers may
be maintained. According to one aspect, direct latching is
used, in part, to avoid metastability because certain direct

US 9,448,878 B2

7

latch registers are operated in the same clock domain as the
serial interface 128. The use of direct latch registers also
avoids delays incurred by the clock domain crossing. As
further described below, the serial communications interface
slave 102 permits direct latching and provides response
codes after read and write operations occur via the serial
interface 128.

FIG. 3 illustrates the serial communications interface
slave 102 of the system 10 of FIG. 1 according to an
example embodiment. As illustrated, the serial communica-
tions interface slave 102 includes an interface physical layer
302, a register addressing and control circuit 304, a status
register 306, a register bank 308, a FIFO register 310, a
clock multiplexer 312, and a debounce circuit 314. It is
noted that the FIFO register 310 may include several (e.g.,
more or less than 16) registers including address and data
registers. In one embodiment, the register bank 308 includes
direct latch registers 309, although the register bank 308 and
the direct latch registers 309 may be separate in other
embodiments. The interface physical layer 302 is generally
relied upon in the serial communications interface slave 102
for driving and buffering voltages on the channels of the
serial interface 128 for data transmission, and for receiving
and discriminating among voltage levels on the channels of
the serial interface 128 for data reception.

In certain aspects, the register addressing and control
circuit 304 resolves addresses received over the serial inter-
face 128 to access the register bank 308, the direct latch
registers 309, and the FIFO 310, and accounts for clock
domain crossings during data communication over the serial
interface 128, to avoid metastability. In other aspects, the
register addressing and control circuit 304 also reads data
from the FIFO 310 and writes the data to the register bank
308, and writes and maintains a status of the serial commu-
nications interface slave 102 in the status register 306. Thus,
the register addressing and control circuit 304 may incre-
ment and decrement a counter in the status register 306 as
data is written to and read from the FIFO 310. In one
embodiment, the status register 306 may be used to store a
count of the number of write entries in the FIFO 310, an
indicator of when the FIFO 310 is full, and/or an indicator
of when the FIFO 310 is empty. The status register 306 may
be used to store additional status information in various
embodiments.

The register bank 308 includes a memory register of the
PMU 100, and may be embodied, at least in part, in
connection with the PMU register bank 103 (FIG. 1). In
general, the register bank 308 may be operated in the 32 Khz
clock domain of the PMU 100. For example, when the PMU
controller 101 writes and reads to the register bank 308, the
writes and reads may occur in the 32 Khz clock domain of
the PMU 100. Further, in one embodiment, when data is
written from the serial interface 128 to the register bank 308,
the data is first written to the FIFO 310 in the SCLK clock
domain and then transferred to the register bank 308 in the
32 Khz clock domain of the PMU 100 by the register
addressing and control circuit 304. Thus, the FIFO 310 may
be relied upon to bridge the SCLK and PMU clock domains.
In one embodiment, however, all data read from the register
bank 308 for communication over the serial interface 128
may be read in the SCLK domain (e.g., 20 Mhz), to facilitate
fast reads on the serial interface 128.

As illustrated in FIG. 3, the serial communications inter-
face slave 102 includes the direct latch registers 309.
Although data may be written from the serial interface 128
to the register bank 308 using the FIFO 310, data received
over the serial interface 128 in association with a write

10

15

20

25

30

35

40

45

50

55

60

65

8

address for access to the direct latch registers 309 is directly
latched to the direct latch registers 309 (i.e., without being
stored into the FIFO 310). Thus, according to one embodi-
ment, data received over the serial interface 128 in associa-
tion with a write address for access to the register bank 308
is written to the FIFO 310, while data received over the
serial interface 128 in association with a write address for
access to the direct latch registers 309 is directly latched to
the direct latch registers 309. As noted above, the register
addressing and control circuit 304 resolves addresses to
determine whether data received over the serial interface
128 is to be written to the direct latch registers 309 or the
register bank 308.

According to certain aspects, a tradeoff in power con-
sumption vs. speed may be attained by operating the register
bank 308 and the direct latch registers 309, at least in part,
in different clock domains. The direct latch registers 309
may be organized to store power-sensitive operating param-
eters of the PMU 100, while the register bank 308 may be
organized to store operating parameters which have a lesser
impact on power consumption. For example, the direct latch
registers 309 may be organized to store and control mode
and voltage settings for certain ones of the power rails
120-124 which should be quickly placed into low power
mode to conserve power. Thus, by relying upon the direct
latch registers 309, one or more of the power rails 120-124
may be quickly powered down to conserve power within a
relatively short period of time.

To provide the appropriate clock signal for synchronous
operations in the serial communications interface slave 102,
the clock multiplexer 312 generates a multiplexed output
clock 320. The multiplexed output clock 320 may be pro-
vided, for example, to the register addressing and control
circuit 304, the direct latch registers 309, and/or to any other
elements of the serial communications interface slave 102,
as needed. The multiplexed output clock 320 may be relied
upon for writing to the direct latch registers 309. In one
aspect, the multiplexed output clock 320 is relied upon by
the PMU 100 for directly latching operating settings data
from the OTP map 106 into the direct latch registers 309.
The register addressing and control circuit 304 ensures valid
and stable reads of all registers in the register banks 308 and
direct latch registers 309. In that context, the register
addressing and control circuit 304 and/or other elements of
the serial communications interface slave 102 account for or
avoid metastability during write and/or read operations. For
example, metastability or unsettled data may be avoided by
ensuring that write and/or read operations are taken within
about %5 an SCLK edge of a 32 KHz clock edge of the PMU
100.

In one embodiment, the clock multiplexer 312 may mul-
tiplex between the SCLK and the PMUCLK (i.e., the 32
KHz clock of the PMU 100) based on at least one of a
system operating status of the PMU 100 and a refresh
control signal BB_RESETb from the host SOC 130. The
refresh control signal BB_RESETb may be asserted by a
logic low signal in one embodiment and be relied upon by
the host SOC 130 to refresh the PMU 100 if the system 10
enters an error condition or state, such as if the host SOC 130
cannot communicate with the PMU 100 over the serial
interface 128. The debounce circuit 314 may be relied upon
in the serial communications interface slave 102 to condition
and/or debounce the refresh control signal BB_RESETb, for
example, over a multiple of the 32 KHz clock edge of the
PMU 100.

In operation, the clock multiplexer 312 may output SCLK
when the PMU 100 is operating in a HOSTON operating

US 9,448,878 B2

9

state and BB_RESETb is not asserted (i.e., logic high). The
PMU 100 may operate in the HOSTON operating state, for
example, so long as the system battery 182 (FIG. 1) is
sufficiently charged for powered operation of the digital
logic circuitry in the PMU controller 101. On the other hand,
the clock multiplexer 312 may output PMUCLK when the
PMU 100 is operating in a non-HOSTON operating state or
whenever BB_RESETb asserted (i.e., logic low).

FIG. 4A illustrates a read timing diagram for communi-
cations over the serial interface 128 of the system 10 of FIG.
1 according to an example embodiment. As illustrated, the
CSb channel falls to logic low for communication on the
serial interface 128 to begin, and the SCLK channel is driven
for synchronous operation. According to the protocol relied
upon by the serial interface 128, in a read operation, a
command is first written to the SDI channel followed by an
address to access a register. In turn, the serial communica-
tions interface slave 102 (FIG. 3) resolves the command and
the address to determine or distinguish between read and
write commands and to identify whether to access either the
register bank 308 or the direct latch registers 309. The
command and address are followed by a wait time, during
which the serial communications interface slave 102 (FIG.
3) accounts for and/or avoids any metastability as described
herein. After the wait time, data is written by the serial
communications interface slave 102 to the SDO channel, as
illustrated, and the serial communications interface slave
102 communicates a response code back to the serial com-
munications interface master 134.

In certain aspects of various embodiments, data may be
clocked out on the falling edge of SCLK and clocked in on
the rising edge of SCLK. With regard to interface com-
mands, commands may include a bit for distinguishing
between reads and writes and two bits for selecting one of
1, 4, 8, or 16 word bursts, among other bits. Further, the
response code may include two bits for identifying states of
OK, WRITE ERROR, READ ERROR, and OTHER
ERROR, among other bits.

FIG. 4B illustrates a write timing diagram for communi-
cations over the serial interface 128 of the system 10 of FIG.
1 according to an example embodiment. As illustrated, the
CSb channel falls to logic low, and the SCLK channel is
driven for synchronous operation. According to the protocol
relied upon by the serial interface 128, in a write operation,
a command is first written to the SDI channel followed by
an address to access a register. In turn, the serial commu-
nications interface slave 102 (FIG. 3) resolves the command
and the address to determine or distinguish between read and
write commands and to identify whether to access either the
register bank 308 or the direct latch registers 309. The
command and address are followed by data written by the
serial communications interface master 134 (FIGS. 1 and 2)
to the SDI channel. The data is followed by a wait time,
during which the serial communications interface slave 102
(FIG. 3) accounts for and/or avoids any metastability as
described herein. After the wait time, the received data is
written by the serial communications interface slave 102 to
either the register bank 308 or the direct latch registers 309,
depending upon the address, and the serial communications
interface slave 102 communicates a response code back to
the serial communications interface master 134.

With regard to the response codes, a write error may
occur, for example, when a write command is associated
with an address to access the register bank 308 via the FIFO
310 (i.e., the address does not fall within the address range
of the direct address register 309) and the FIFO 310 is full.
Also, a read error may occur, for example, when a read

10

15

20

25

30

35

40

45

50

55

60

65

10

command is associated with an address that overlaps with
data in the FIFO 310 waiting to be written to the register
bank 308 (i.c., a read-after-write error). In the case of a read
error, the serial communications interface slave 102 may
return NULL data as a further indication of the error
condition.

FIG. 5A illustrates a burst read timing diagram for com-
munications over the serial interface 128 of the system 10 of
FIG. 1 according to an example embodiment, and FIG. 5B
illustrates a burst write timing diagram for communications
over the serial interface 128 of the system of FIG. 1
according to an example embodiment. The timing diagrams
in FIGS. 5A and 5B generally follow the protocol principles
described above with reference to FIGS. 4A and 4B, but are
extended to illustrate burst read and write operations.

Turning to FIGS. 6 and 7, process flow diagrams illus-
trating example processes performed by a system having a
serial interface for clock domain crossing are provided.
While the process flow diagrams are described in connection
with the system 10 of FIG. 1, it is noted that other systems
may perform the illustrated processes. That is, in various
embodiments, systems similar to the system 10 may perform
the processes illustrated in FIGS. 6 and 7.

In certain aspects, the flowcharts of FIGS. 6 and 7 may be
considered to depict example steps performed by the system
10 according to one or more embodiments. Although the
process diagrams of FIGS. 6 and 7 illustrate an order, it is
understood that the order may differ from that which is
depicted. For example, an order of two or more elements in
the process may be scrambled relative to that shown, per-
formed concurrently, or performed with partial concurrence.
Further, in some embodiments, one or more of the elements
may be skipped or omitted within the scope and spirit of the
embodiments described herein.

FIG. 6 illustrates a process flow diagram for a method 600
of serial interface clock domain crossing, direct latching,
and response codes performed by the system 10 of FIG. 1
according to an example embodiment, and FIG. 7 further
illustrates the process flow diagram for the method 600.

Beginning at reference numeral 602, the process 600
includes receiving a data communication command and
address over a serial interface. For example, a data commu-
nication command and address, as described herein, may be
received over the serial interface 128 (FIGS. 2 and 3).
Generally, the command and address are received by the
serial communications interface slave 102 from the serial
communications interface master 134 (FIGS. 1-3). At ref-
erence numeral 604, the process 600 includes identifying the
data communication command received at reference
numeral 602. Here, the serial communications interface
slave 102 may identify whether the data communication
command is a read or write command. At reference numeral
606, the process 600 includes proceeding to reference 608
when the data communication command is a read command,
and proceeding to reference numeral 618 when the data
communication command is a write command.

Turning to reference numeral 608 for a read command, the
process 600 includes resolving the address received at
reference numeral 602. For example, as described above
with reference to FIG. 3, the address may be resolved by the
serial communications interface slave 102 to determine
whether to access either the register bank 308 or the direct
latch registers 309. At reference numeral 610, the process
600 includes comparing the address for an overlap with data
in a FIFO register waiting to be written to a register bank.
Again, as described above in connection with FIG. 3, the
address may be compared for any overlap with data in the

US 9,448,878 B2

11

FIFO 310 that is waiting to be written to the register bank
308. In this manner, a read-after-write error condition may
be detected.

In some embodiments, the process 600 may include
checking a status register of the serial interface 128, before
or after data communication on the serial interface 128. With
reference to FIG. 3, for example, the status register 306 may
be checked to identify whether the FIFO 310 is full, etc. In
this manner, for example, the serial communications inter-
face master 134 may verify whether the FIFO 310 is full
before reading or writing data to the register bank 308. Error
conditions may be avoided if conflicts are identified with
reference to the status register 306.

At reference numeral 612, the process 600 includes
accounting for a clock domain crossing in association with
the communicating. For example, when reading data from
the register bank 308 to communicate over the serial inter-
face 128, the serial communications interface slave 102 may
account for or avoid metastability by ensuring that the data
reads are taken within about %2 an SCLK edge of a 32 KHz
clock edge of the PMU 100, as described herein.

At reference numeral 614, the process 600 includes com-
municating data or a NULL reply over the serial interface.
For a read operation, the data communicated over the serial
interface is the data which was stored in the register iden-
tified by the address received at reference numeral 602. In
the condition of a read error, such as a read-after-write error,
a NULL reply is communicated to indicate that the data
associated with the address is in transition (i.e., waiting to be
updated or re-written based on data waiting in the FIFO
310). Finally, at reference numeral 616, the process 600
includes communicating a response code. The response code
may be communicated according to the examples described
above to identify any error conditions. Otherwise, the
response code may indicate a confirmation of the data
transfer with an OK status indicator.

Turning to reference numeral 618 for a write command,
the process 600 includes resolving the address received at
reference numeral 602. Again, the address may be resolved
by the serial communications interface slave 102 to deter-
mine whether to access either the register bank 308 or the
direct latch registers 309. At reference numeral 620, the
process 600 proceeds to either reference numerals 622 or
628 in FIG. 7, depending upon whether the address resolved
at reference numeral 618 identifies access to the register
bank 308 via the FIFO 310 or the direct latch registers 309.

Continuing to reference numeral 622 of FIG. 7, when a
direct latch address is identified, the process 600 includes
communicating data over the serial interface. Here, the data
communicated over the serial interface 128 includes data
communicated from the serial communications interface
master 134 to the serial communications interface slave 102
to be written to the direct latch registers 309 of the PMU
100. At reference numeral 624, the process 600 includes
directly latching the data into the direct latch register and
accounting for a clock domain crossing. For example, the
serial communications interface slave 102 may directly latch
the data received at reference numeral 622 into the direct
latch registers 309 of the PMU 100, while avoiding meta-
stability or unsettled data by ensuring that the latch takes
place within about Y2 an SCLK edge of a 32 KHz clock edge
of the PMU 100. Finally, at reference numeral 626, the
process 600 includes communicating a response code. The
response code may be communicated according to the
examples described above to identify any error conditions or
an OK status.

10

15

20

25

30

35

40

45

50

55

60

65

12

Continuing back to reference numeral 628 of FIG. 7,
when a direct latch address is not identified, the process 600
includes communicating data over the serial interface. Here,
the data communicated over the serial interface 128 includes
data communicated from the serial communications inter-
face master 134 to the serial communications interface slave
102 to be written to the register bank 308 of the PMU 100.
At reference numeral 630, the process 600 includes referring
to a status register. For example, the serial communications
interface slave 102 may refer to the status register 306 to
identify whether the FIFO 310 is full, or to identify another
error condition. In certain embodiments, if an error condi-
tion is identified at reference numeral 630, then the process
600 may proceed immediately to reference numeral 634, to
communicate a response code that indicates the error con-
dition. At reference numeral 632, the process 600 includes
writing the data into the FIFO 310. In turn, the data written
to the FIFO 310 may be written to the register bank 308 by
the serial communications interface slave 102, as described
herein. Finally, at reference numeral 634, the process 600
includes communicating a response code. The response code
may be communicated according to the examples described
above to identify any error conditions or an OK status.

According to aspects of the embodiments described
above. A system and method of a clock domain crossing
serial interface is described. Using the interface, data may be
directly latched into a direct latch register to increase speed
in communications. Additionally, to conserve power, for
example, data may also be written into a clock domain
synchronizing FIFO register for ultimate access to lower
speed register access. For both read and write operations,
reference may be made to a status register of the serial
interface to identify or mitigate error conditions, and wait
times may be relied upon to account for a clock domain
crossing. After each of the read and write operations, a
response code including a status indictor may be commu-
nicated.

With regard to aspects of the structure or architecture of
the system 10, in various embodiments, each of the PMU
controller 101, the power processor 132, and or other
processors or processing circuits of the system 10 may
comprise general purpose arithmetic processors, state
machines, or Application Specific Integrated Circuits
(“ASICs”), for example. Each such processor or processing
circuit may be configured to execute one or more computer-
readable software instruction modules. In certain embodi-
ments, each processor or processing circuit may comprise a
state machine or ASIC, and the processes described in FIGS.
2 and 3 may be implemented or executed by the state
machine or ASIC according to the computer-readable
instructions.

The memories and/or registers described herein may
comprise any suitable memory devices that store computer-
readable instructions to be executed by processors or pro-
cessing circuits. These memories and/or registers store com-
puter-readable instructions thereon that, when executed by
the processors or processing circuits, direct the processors or
processing circuits to execute various aspects of the embodi-
ments described herein.

As a non-limiting example group, the memories and/or
registers may include one or more of an optical disc, a
magnetic disc, a semiconductor memory (i.e., a semicon-
ductor, floating gate, or similar flash based memory), a
magnetic tape memory, a removable memory, combinations
thereof, or any other known memory means for storing
computer-readable instructions.

US 9,448,878 B2

13

In certain aspects, the processors or processing circuits are
configured to retrieve computer-readable instructions and/or
data stored on the memories and/or registers for execution.
The processors or processing circuits are further configured
to execute the computer-readable instructions to implement
various aspects and features of the embodiments described
herein.

Although embodiments have been described herein in
detail, the descriptions are by way of example. The features
of'the embodiments described herein are representative and,
in alternative embodiments, certain features and elements
may be added or omitted. Additionally, modifications to
aspects of the embodiments described herein may be made
by those skilled in the art without departing from the spirit
and scope of the present invention defined in the following
claims, the scope of which are to be accorded the broadest
interpretation so as to encompass modifications and equiva-
lent structures.

What is claimed is:

1. A method for serial interface clock domain crossing, the
method comprising:

identifying a data communication command received

over a serial interface;

decoding an address to determine whether the address

falls within a direct latch address range of a register
bank;

communicating data over the serial interface; and

generating a multiplexed output clock using a system

clock and a Power Management Unit (PMU) clock, for
writing to and reading from the register bank, based on
at least one of a current system operating state and a
refresh control signal from a host processor.

2. The method of claim 1, further comprising accounting
for a clock domain crossing in association with communi-
cating the data.

3. The method of claim 2, further comprising when the
address falls within the direct latch address range, directly
latching the data into a direct latch register of the register
bank based on a clock signal of the serial interface.

4. The method of claim 1, further comprising:

accounting for a clock domain crossing in association

with communicating the data; and

when the address does not fall within the direct latch

address range, storing the data into a first-in-first-out
(FIFO) register.

5. The method of claim 4, further comprising writing data
from the FIFO register to the register bank.

6. The method of claim 1, further comprising, when the
data communication command comprises a read command,
communicating the data over the serial interface after a wait
time.

7. The method of claim 1, further comprising, when the
data communication command comprises a write command,
communicating the data over the serial interface for writing
to the register bank.

8. The method of claim 1, further comprising, after a wait
time, communicating a response code over the serial inter-
face.

9. The method of claim 1, further comprising, when the
data communication command comprises a write command
and the address does not fall within the direct latch address
range, determining whether a first-in-first-out (FIFO) regis-
ter is full.

10. The method of claim 9, further comprising, when
determination is made that the FIFO register is full, com-
municating a write error response code.

10

15

20

25

30

35

40

50

55

60

65

14

11. The method of claim 1, further comprising, when the
data communication command comprises a read command
and the address overlaps with data in a first-in-first-out
(FIFO) register waiting to be written to the register bank,
communicating a read error response code.

12. A system for serial interface clock domain crossing,
the system comprising:

a communications interface configured to identify a data
communication command received over a serial inter-
face;

register control circuitry configured to:
decode an address to determine whether the address

falls within a direct latch address range of a register
bank;
communicate data over the serial interface; and

a clock multiplexer configured to generate a multiplexed
output clock using a system clock and a Power Man-
agement Unit (PMU) clock, for writing to and reading
from the register bank, based on at least one of a current
system operating state and a system refresh control
signal from a host processor.

13. The system of claim 12, wherein the register control

circuit is further configured to:

account for a clock domain crossing in association with
data communication over the serial interface; and

directly latch the data into a direct latch register of the
register bank based on a clock signal of the serial
interface when the address falls within the direct latch
address range.

14. The system of claim 12, wherein the register control
circuit is further configured to account for a clock domain
crossing in association with data communication over the
serial interface.

15. The system of claim 12, wherein the register control
circuit is further configured to store the data into a first-in-
first-out (FIFO) register when the address does not fall
within the direct latch address range.

16. The system of claim 12, wherein the clock multiplexer
is configured to multiplex between a clock of the serial
interface and the system clock.

17. A method, comprising:

receiving a data communication command and an address
over a serial interface and determining that the data
communication command comprises one of a read or a
write command;

resolving the address to access a register bank;

decoding the address received over the serial interface to
determine whether the address falls within a direct latch
address range of the register bank;

when the address does not fall within the direct latch
address range of the register bank, storing data into a
first-in-first-out (FIFO) register if the FIFO register is
not full; and

after a wait time, communicating a response code includ-
ing a status indicator over the serial interface.

18. The method of claim 17, further comprising, commu-

nicating the data over the serial interface.

19. The method of claim 17, further comprising account-
ing for a clock domain crossing when directly latching the
data into a direct latch register of the register bank based on
a clock signal of the serial interface.

20. The method of claim 17, further comprising, when the
FIFO register is full, communicating a write error response
code.

